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Abstract

This chapter contains besides genuinely new material also old ma-
terial which has become more or less obsolete with the advances oc-
curred in the construction of quantum TGD described in the chapters
" Equivalence of Loop Diagrams with Tree Diagrams and Cancellation
of Infinities in Quantum TGD” and ”Construction of Quantum The-
ory”. The conclusions from this work are following.

a) Quantum TGD can be formulated as a quantum field theory
using modified Dirac action. This formulation is formally a free field
theory for fermions and thus free of divergence difficulties. It satisfies
the quantum gravitational holography principle and relies heavily on
super-canonical and super Kac-Moody super algebras associated with
light like 7-D and 3-D causal determinants which allow a promising
matter to understand the classical non-determinism of Kahler action.

b) A completely new element is 7-3 duality and closely related effec-
tive 2-dimensionality, basically due to the conformal invariance related
to the light like 3-D causal determinants. Effective 2-dimensionality
leads to Feynman rules differing dramatically from those of perturba-
tive quantum field theories. The particles on the internal lines are not
labelled by four-momenta, and can be said to be on mass shell in the
sense that the spinors in the propagator lines correspond to generalized
eigen modes of the modified Dirac operator whereas the solutions of
the modified Dirac equation represent N = 4 gauge super symmetries.
Vertices are associated with 7-D CDs. Loop summations are absent
and diagrams with loops are equivalent with tree diagrams. Also the
finiteness of the S-matrix is manifest. Coupling constant evolution is
replaced by a discrete coupling constant evolution induced by the in-
finite hierarchy of p-adic length scales each giving rise to a value of
Kéhler coupling strength analogous to a critical temperature.

The beauty and elegance of this approach makes the whole idea of
perturbative QFT limit more or less obsolete, and it would seem that
the notion of field theory limit should be replaced with a truncation of
the full theory by posing restrictions on the energies of the interact-
ing particles. p-Adic length scale hierarchy defines in a very natural
manner this kind of truncation hierarchy.

The construction of the various limits of TGD should be based on
following observations.

a) One can construct a whole family of limits. Both real and p-adic
limits are possible and latter might provide an extremely simple and
effective calculational tool. The classification of the particles according
to the dimension D of the C'P; projection of the particle like 3-surface
implies that there are several limits. The most interesting D = 4 case
corresponds to the identification of C' P, type extremals as fundamental
particles, whereas D < 4 extremals having at least one large spatial



dimension, most probably serve as templates for topological condensa-
tion of C'P; type extremals.

b) The limit of TGD should involve the effective elimination of con-
figuration space degrees of freedom and their description phenomeno-
logically. In particular, quark color is treated as spin like quantum
numbers. Various coupling constants and propagators are inputs of
limit and are predicted by the S-matrix constructed using the new
Feynman rules. The 2-D surfaces X? identified as the intersections
of light like 3-D and 7-D causal determinants are TGD counterparts
of partons, and by the effective 2-dimensionality code all relevant data
about quantum TGD. These surfaces are idealized as point like objects:
partons become quarks and gluons. What is lost in this process is the
possibility to describe bound states of partons from the first principles:
QCD provides a basic example about this.

¢) The only elegant manner to define the limits of TGD are as
theories in Minkowski space. The information about the geometry
of space-time surface is included implicitly in the process giving the
coupling constants.

d) The notion of propagator in M* makes sense as an approximate
concept if S-matrix elements can be expressed as tree diagrams using
Feynman rules of effective field theory in M?*. The construction of the
scalar propagator as a partition function in super-canonical algebra
suggests that the propagator might have a universal form.

For completeness also the older approach based on the Yang-Mills
Dirac (YMD) action for induced gauge fields modified by adding a
quantum part and defined for maximum of Kéhler function (absolute
minimum of Kéhler action) is discussed. This involves a generalization
of the induction procedure so that it applies also the quantum fields.
Propagators are put in by hand and propagator poles correspond to the
masses of the particles predicted by the p-adic mass calculations. The
only sensible interpretation of YMD action is as effective action giving
rise only to tree diagrams: this of course conforms with the new view
about Feynman diagrams. In principle Poincare invariance produces
no problems. The description of family replication phenomenon and
quark color require somewhat tricky constructions.

1 Introduction

This chapter represents old material part of which has become more or less
obsolete with the advances occurred in the construction of quantum TGD
described in the chapters [B4, C2, C5]. The conclusion from this work is
that quantum TGD can be formulated in terms of effectively 2-dimensional
conformal field theory using modified Dirac action. This formulation is for-



mally a free field theory for fermions and thus free of divergence difficulties.
It satisfies the quantum gravitational holography principle and relies heavily
on super-canonical and super Kac-Moody super algebras.

A completely new element is effective 2-dimensionality which leads to
Feynman diagrams differing dramatically from those of perturbative quan-
tum field theories. The particles on the internal lines are not labelled by
four-momenta and can be said to be on mass shell in the sense that the
spinors in propagator lines correspond to generalized eigen modes of the
modified Dirac operator. Therefore loop summations are absent and dia-
grams with loops are equivalent with tree diagrams. Also the finiteness of
the S-matrix is manifest.

The beauty and elegance of this approach makes the whole idea of per-
turbative QFT limit more or less obsolete, and it would seem that the notion
of field theory limit should be replaced with a truncation of the full theory
by posing restrictions on the energies of the interacting particles. p-Adic
length scale hierarchy defines in a very natural manner this kind of trunca-
tion hierarchy. Despite this I feel it reasonable to consider also the earlier
ideas related to QFT limit besides the discussion of what field theory limit
could mean and in what sense it might exist.

1.1 What kind of limits of TGD one can consider?

There is a large variety of limits of TGD that one can consider. It is not
however at all obvious that this limits deserve the attribute 'QFT".

a) One can consider ultrahigh energy QFT limit in which all states of
super-conformal representations are treated as point like particles and max-
ima of Kahler action for fixed values of zero modes are included. This means
that the 2-surfaces X2 representing intersections of 3-D and 7-D light like
causal determinants (CDs) are approximated as points. Basic dynamical
variables are fermionic oscillator operators generating Super-Kac-Moody al-
gebra and super-canonical algebras.

b) Various limits are obtained by including only the massless states which
remain light in p-adic massivation in given mass scale. p-Adic thermody-
namics and p-adic Higgs mechanism are needed to derive the values of parti-
cle masses which are regarded as fixed parameters in the construction of the
limit. The full theory is needed to predict the values of coupling constants
and relatively satisfactory picture about how the coupling constants are de-
termined already exists: also the model of S-matrix based on CP, type
extremals could be used in order to derive the values of various coupling
constants [C2].



¢) One must distinguish between real and various p-adic limits of TGD.
p-Adic limits of TGD could be seen as a model for cognitive physics and thus
models for models of real physics. The successes of the p-adic mass calcula-
tions suggest that p-adic limits of TGD could provide simplified description
of the full theory.

d) The limits of TGD also depend on which kind of objects are taken
as point-like particles: the number 0 < D < 4 of the compactified dimen-
sions classifies various limits. D = 4 corresponds to the simplest limit in
which C'P, type extremals are the basic objects. This is certainly the most
interesting limit. Although the mass spectrum is universal, these objects
seem to correspond to different particle species. All D < 4 objects have
at least one large space-like dimension, and it is quite possible that they
serve as templates for the topological condensation of C'P, type extremals
so that the primary degrees of freedom are masked. For instance, massless
extremals are D = 0 objects and expected to carry Bose-Einstein conden-
sates of photons and generate coherent light. The construction D < 4 limits
involves the construction of the fundamental S-matrix in order to fix the ba-
sic parameters: for instance, for cosmic strings (D = 2) one expects string
model type S-matrix to be an excellent approximation. In principle also
the transformations of particles with different values of D to each other are
possible and a quantum model for these transformations is needed. In the
following the considerations are restricted to D = 4 case.

For a long time the reason for why the dimension of C'P, projection
emerges in the characterization of the limit remained more or less a mystery.
Much later the construction of extremals of Kéahler action demonstrated that
the dimension of C'P, projection characterizes the asymptotic behavior of
space-time sheets representing self-organization patterns having vanishing
Lorentz Kéhler 4-force and selected by dissipation. The variational princi-
ple selecting preferred extremals of Kéahler action as analogs of Bohr orbits
could realize the second law of thermodynamics at the space-time level. This
is indeed possible by the non-determinism of Kéahler action. What is new is
that also geometric time reversals of these patterns are possible and are re-
alized for space-time sheets with negative time orientation. Phase conjugate
photons and more generally, phase conjugates of any elementary particles,
correspond to this geometric time reversal.

1.2 Should the limits of TGD be defined in M* or X*?

The reduction of generalized Feynman diagrams to tree diagrams and the
absence of virtual particles and loop summations makes the Feynman rules



of TGD quite different from those of standard quantum field theories. For
the same reason the generalized Feynman rules are to some extend analogous
to those usually assigned with so called effective action. Running coupling
constants are not possible nor needed since discrete p-adic coupling constant
evolution mimics the coupling constant flow. The basic implication is that
any field theory limit must be based on effective action so that one can allow
also non-renormalizability.

The values of the coupling constants can be understood only when con-
figuration space degrees of freedom are taken into account. For instance,
the construction of BFF vertex demonstrates this when B is spin one bo-
son [C2]. The implication is that coupling constants as functions of p-adic
length scale must be taken as predictions of fundamental quantum TGD.

Making the questionable assumption that TGD allows some kind of
effective field theory as a low energy limit, 7-3 duality provides more or
less unique answer to the question whether the limit should be defined in
Minkowski space or at space-time surface. By 7-3 duality the construction of
S-matrix leads to construction of S-matrix in terms of generalized diagrams
and this procedure defines also n-points functions in M%. The most elegant
formulation for effective field theory is in M* and would simply result by
posing the appropriate constraints on particles appearing as incoming and
outgoing states. This approach is attractive also from the point of view of
symmetries.

One might also criticize this approach since one loses totally the concept
of the classical space-time crucial for various applications of the TGD based
space-time concept. For instance, it seems difficult to understand the in-
teraction with classical fields. The defence against this criticism is that the
generalized Feynman diagrams carry all relevant data about classical fields
but this data is crunched invisible at the level of n-point functions and is
visible via general properties like the values of coupling constants depending
on the p-adic length scale of space-time sheet.

This does not exclude approximate effective field theories at space-time
surfaces defined by a general coordinate invariant action based on induced
gauge fields and metric so that the interaction with classical fields becomes
part of the theory. It deserves to be noticed that the notion of classical field
differs from that in usual gauge theories since one must distinguish between
order parameters of coherent states and genuine classical fields induced from
the geometry of the imbedding space. In TGD framework Einstein’s equa-
tions are more like equations of state for the gravitational mass density [D5]
so that Einstein-Hilbert action cannot be regarded as a part of effective ac-
tion of quantum field theory. This action contains also second derivatives



of imbedding space coordinates. Indeed, YM action for induced gauge fields
plus quantum parts would be enough to define graviton emission vertices.
Propagators and particle masses must be put in by hand. Unfortunately,
this kind of theory is rather awkward due to the artificial realization of
Poincare invariance. The further difficulty is that for X* = M* the YM
action treating quantum fields as perturbations of classical fields vanishes
identically and the theory is trivial in the simplest possible situation that
one can consider.

1.3 How to treat classical and p-adic non-determinisms in
QFT limit?

The classical non-determinism of the Kahler action implies that the number
of the real degenerate absolute minima associated with a given space-like 3-
surface can be very large, in fact infinite as in the case of C'P; type extremals.
This degeneracy gives rise to spin-glass type behavior already in case of
CP» type extremals in the sense that one must calculate averages over the
scattering rates predicted by QFT:s with varying basic coupling parameters
and propagators.

In p-adic context p-adic pseudo constants imply an additional cognitive
degeneracy which should not be confused with the classical non-determinism.
Contrary to the original expectations, the ultra-metricities related to the
spin-glass behavior and p-adicity are in principle of different origin. p-Adic
degeneracy is due to the possibility to choose the parameters labelling differ-
ent branches of the roots of the quaternionic polynomials to be p-adic pseudo
constants so that the space-time surface is a union of pieces associated with
various roots.

The obvious question is how should one treat the real degeneracy.

a) Is real degeneracy of the 4-surface associated with virtual particle an
additional degeneracy enhancing the propagator in resonant manner? This
would mean superposition of transition amplitudes and a sum analogous to
path integral would result. This option gives rise to divergent amplitudes
and must be given up. Also the generalization of the notion of classical
determinism to allow 3-surfaces which are unions of space-like 3-surfaces
with time like separations with the property that they fix the solution of
field equations uniquely, excludes this option.

b) Should one to assign zero modes a normalized wave functional? This
is in principle possible and leads to quantum spin glass structure. One
obtains well defined transition amplitudes. It seems that one must apply
this procedure if one is interested on how the transition probabilities depend



on zero modes.

¢) The third, and the simplest, possibility is that localization occurs in
the zero modes in each quantum jump and means that quantum measure-
ments are local at the level of the zero modes sector of the configuration
space. The localization in zero modes means that one must select single
space-time-surface to calculate QFT limit. This non-uniqueness is due to
the spin-glass nature of TGD Universe implying that the laws of physics are
to some extend a result of a generalized Darwinian selection. A statistical
averaging over the scattering rates yielded by degenerate space-time surfaces
might be needed for practical purposes. This kind of averaging is very much
like statistical averaging of thermodynamics for spin-glass systems.

d) Path integral formalism suggests that the sum over Feynman graphs
with lines replaced with C'P» type extremals could define the QFT limit.
The resulting Feynman diagrammatics would be very similar to string dia-
grammatics. What is especially nice is that that the random zitterbewegung
motion with light velocity makes C'P; type extremal massive and makes thus
possible, not only massless states, but also massive on-mass-shell states as
well as virtual off-mass-shell states. On mass-shell mass spectrum dictated
by conformal invariance. There would be a summation over all M'j*r positions
of the vertices associated with the Feynman diagrams.

However, since zitterbewegung degrees of freedom represent zero modes,
one might argue that the localization occurs in these degrees of freedom.
This would be in accordance with spin glass nature of TGD Universe in
classical sense and with the conformal invariance associated with the zitter-
bewegung. 7-3 duality implying effective 2-dimensionality forces the same
interpretation since the space-time surfaces for which the intersections X?2 of
light like 3-D CDs with 7-D CDs are same (including tangent spaces at X?)
are equivalent with respect to the metric of configuration space. It is not
quite clear whether one should regard these degrees of freedom as macro-
scopic zero mode degrees of freedom or as gauge degrees of freedom. One
implication is is that in the case of the high energy limit defined by C'P;
type extremals there is no need to sum over the random light like orbits of
CP; type extremals.

It turns out that the exponent of Kéhler action, which is essentially the
exponent of the volume of the C'P, type extremal appearing as a propagator
line, is sensitive to the selection of the arbitrary function u of C'Py coordi-
nates associated with the light like zitterbewegung orbits m* = f¥(u), and
that this forces averaging over scattering rates.

The development of the vacuum expectation value of Higgs field could
correspond in TGD framework to the generation of non-vanishing charge



@ in the complement of u(2) subalgebra in su(3) algebra defined by the
conserved charges associated with the variation of the modified Dirac ac-
tion with respect to the induced Kéahler form. An interesting possibility is
that the non-vanishing of these non-diagonal charges correlates directly with
zitterbewegung.

It turns out that the inertial four-momentum could be identified as the
average of the non-conserved gravitational four-momentum of a topologically
condensed C'P, type extremal [?]. Higgs bosons are in turn identifiable as a
wormhole contacts with the property that the two light-like causal determi-
nants associated with it carry the quantum numbers of right (left) handed
fermion and left (right) handed antifermion. This picture is consistent with
p-adic thermodynamics description of particle massivation requiring also the
contribution of Higgs bosons besides purely thermodynamical contribution
assignable to the primary topological condensation.

1.4 Localization in zero modes

The occurrence of localization in all zero modes except in center of mass
degrees of freedom and modular degrees of freedom means an enormous
simplification of the theory and makes the notion of QFT limit sensible. All
QFT limits treat space-time as an arena of dynamics although averaging of
the scattering rates might be involved and would reflect spin-glass behavior.
These space-time surfaces belong to the reduced configuration space C'H,..q,
whose points correspond to the interacting 4-surfaces X 4(U¢Yi3)— Spin glass
analogy means that scattering rates must be averaged over a probability
distribution in CH,.q4.

a) As a consequence of the approximate canonical invariance spoiled
only by the classical gravitation, one expects several maxima of the Kéahler
function associated with given values of the zero modes. Generalization
of the notion of classical determinism implies that quantum jump involves
selection among these maxima so that degeneracy in fiber degrees of freedom
is effectively removed. Macroscopic quantum jumps (say those associated
with volitional act) might naturally correspond to the selection of this kind of
maximum. This means the effective elimination of the configuration space
integral in the fiber degrees of freedom in which the configuration space
metric is nontrivial by replacing the functional integral by a perturbative
expansion around a maximum of the Kéhler function with respect to the
fiber degrees of freedom.

b) The construction of the S-matrix suggests that localization in confor-
mal degrees of freedom occurs in the case of C' P, type extremals, and means
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that one particular zitterbewegung orbit for which the quantized inertial
four-momentum for the modified Dirac equation identified as gravitational
four-momentum is in the average direction of ¢cm motion, is selected. This
is not in conflict with the conformal invariance and implies quantum coun-
terpart of the spin glass property in the sense that averaging over reaction
rates associated with the S-matrices labelled by an arbitrary function of C P,
coordinates appearing in the definition of C'P» type extremal is needed.

¢) The modular degrees of freedom associated with boundary compo-
nents of particle like 3-surfaces do not correspond to zero modes. p-Adic
mass calculations rely strongly on the notion of elementary particle vacuum
functional. Since localization does not occur, one can phenomenologically
describe elementary particle vacuum functionals as spin like degrees of free-
dom in the point like limit of the theory.

There are two possibilities according to whether one identifies the mod-
ular contribution to the mass squared as a thermodynamical average or as
a quantum mechanical contribution to the vacuum weight of Super Vira-
soro representation. The calculation of the elementary particle and hadron
masses forces to assume that the origin is quantum mechanical and that
modular degrees of freedom contribute Dirac operator type term to super
generators G: unfortunately this operator is not known yet.

d) In p-adic context there is an additional degeneracy due to p-adic
non-determinism but also this degeneracy is removed by similar argument
meaning that also imagined worlds behave classically.

e) Fiber degrees of freedom, in particular color, must be described as spin
like degrees of freedom at the QFT limit. Kac-Moody algebra and center
of mass motion in C'P, degrees of freedom correspond to separate color
degrees of freedom but at the QFT limit the microscopic color structure is
not visible.

1.5 Connection between Fock space and topological descrip-
tions of the many particle states

The connection between Fock space- and topological descriptions of particle
states and particle reactions is fundamental for the interpretation of the the-
ory. The fact that Feynman diagrams with lines thickened to four-manifolds
provide the topological counterpart of of QFT Feynman diagrams in TGD,
allows to understand the connection between Fock states and particle like
3-surfaces. QFT interaction vertices are only a phenomenological manner
to describe underlying topological vertices for an S-matrix defined by free
Hamiltonian associated with the modified Dirac action. One beautiful pre-
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diction is the absence of the divergences coming from interaction vertices.

7-3 duality implying effective 2-dimensionality leads to a very concrete
picture where partons correspond to the 2-dimensional intersections of 3-D
light like CDs and 7-D CDs and particles to 3-surfaces. Partons can carry
arbitrarily high fermion and anti-fermion numbers but in practice only the
states with fermion numbers zero and one are expected to be stable against
rapid decay. The formation of bound states has as space-time correlate
formation of join along boundaries bonds so that the outer boundaries of
3-surfaces fuse together. These aspects of quantum TGD have no QFT
counterpart so that there is no hope of QFT based description of bound state
formation nor simultaneous description of the parton and particle aspects
of hadrons.

2 About the low energy limit of TGD defined in
M4

It has become clear that the connection of TGD with quantum field theories
and the possible QFT limit of TGD is probably not what naive expectations
first suggested. The obvious question is whether any QFT counterpart for
TGD exists as a low energy limit: the answer to this question seems to
be negative for reasons which should be clear from previous chapters. For
instance, the equivalence of generalized loop diagrams with tree diagrams
should correspond to the vanishing of loops in the possibly existing QFT
limit of TGD and no QFT with the required symmetries seems to exist.
The second key question is how to understand the relationship between
TGD and QFT.

2.1 Is QFT limit possible at all?

One can invent several arguments in favor that the low energy limit of TGD
is very probably not any quantum field theory of a standard kind. For
instance, N = 4 super conformal gauge symmetry for leptons and quarks
does not give rise to N = 1 global super-symmetry, not even broken one.
The dependence of S-matrix on background classical fields is predicted
but the dependence seems to be much more delicate than one might have ex-
pected in QFT framework. Indeed, the micro-locality of QFT limit defined
by Eistein Yang-Mills action with induced gauge fields and metric replaced
by their quantum corrected versions would lead to horrible divergences and
the failure of Poincare and color symmetries. The interpretation of YM
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action as an effective action giving only tree diagrams is of course possi-
ble but not very attractive. In this case the quantum part of the induced
gauge field could be however interpreted as a gauge field in H and allow to
achieve Poincare invariance. Particle propagators would be identified as free
propagators in H and particle masses would be but in as ad hoc parameters.

Second point is that the low energy limit of the space-time S-matrix is
not quite enough to give a satisfactory approximation to the real physics.
The description of color degrees of freedom necessitates configuration color
partial waves and thus configuration space level. This applies also to the
Poincare quantum numbers. Besides color rotational and Lorentz degrees of
freedom for space-time sheets, also translational degrees of freedom for X
must be allowed: the positions of the dips of X would correspond to the
arguments of Green’s functions of quantum field theory.

Modular degrees of freedom, in particular the size, of X2 might be also
necessary and indeed suggested by the structure of N-point functions for
composite particles of a free quantum field theory [19]. In TGD framework
these composites would correspond to X? predicted to have a composite
structure in the sense that configuration space super algebras assign to them
many-particle state space. The inclusion of only light particles and the
description of color and modular degrees of freedom as spin like degrees
of freedom would lead to a theory which would have the closest possible
resemblance with quantum field theory.

The most one can hope seems to be following. The approximate decom-
position of the S-matrix elements to propagators and vertices as functions
of incoming and outgoing 4-momenta and other quantum numbers and the
assignment of interacting fields with the propagator poles could give rise to
an approximate description of the theory as a quantum field theory using
effective action. As demonstrated in the earlier chapters, ” anyonic shydrody-
namics” at light like 3-D CDs predicts the masses of the particles appearing
as complex poles of S-matrix. The mimicry of the p-adic coupling constant
evolution using full Feynman diagrammatics allowing loops and regulariza-
tion, does not seem plausible.

2.2 How could one understand the relationship between TGD
and quantum field theories?

Concerning the relation between TGD and QFT approach, a hint comes
from the fact that the Feynman diagrams of quantum field theories quite
generally can be classified by the minimal genus g of the Riemann surface at
which they are imbeddable without crossings. The ends of the incoming and
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outgoing lines obviously correspond to punctures of these Riemann surfaces.

In [19] N-point functions of local composites of free fields are studied.
It is demonstrated that the Feynman diagrams of genus g can be expressed
as integrals of amplitudes over the moduli space associated with a Riemann
surface of genus g and possessing n holes. The argument involves the repre-
sentation of propagators using Schwinger parameters (proper time 7 along
the propagator line) and combination of all diagrams with a common skele-
ton to single diagram: this means that propagator lines connecting two ver-
tices and continuously deformable to each other are lumped together. The
counting of the non-redundant Schwinger parameters leads to the identifica-
tion of these parameters as D = 6g — 6 4+ 3n moduli associated with a sphere
with g handles and n holes. The sizes of the holes define an n-dimensional
space R} factoring out and leaving the moduli space of punctures with di-
mension D = 6g — 6 + 2n (for (¢ = 0,n > 3) the moduli space of punctures
is trivial since 3 points of sphere can be mapped to any other 3 points by
a Mobius transformation). What remains open is whether the a amplitudes
depending on the moduli could be expressed in terms of correlation func-
tions of some conformal field theory perhaps related to string model. This
leads the conjecture of [19] that some kind of a closed string model allows
to re-organize the perturbative expansion of also interacting quantum field
theories. Irrespective of whether this is the case, the finding suggests ideas
about how the low energy limit of TGD relates to the existing quantum field
theories.

It is interesting to translate this result to TGD framework. 7-3 duality
implies effective two-dimensionality and hence the generalized tree diagrams
are all that is needed to compute the S-matrix. Loops in the ordinary
sense should thus vanish. Tree diagrams have g = 0 and are imbeddable
to plane or sphere. The counterpart for the Riemann surface would be
6Mj‘;. The generalized Feynman diagram connecting incoming particles at
Xl = (5Mj4r x C'P, and outgoing particles at X7 = §M* x CP, would be
mapped to X 1 via the identification of X 1 and X7 mapping the particles to
Xl projected further down to (5Mi The lines of the generalized Feynman
diagram would be mapped to a tree graph connecting the incoming and
outgoing particles at er-

That this surface is metrically a 2-D sphere, is consistent with the pre-
diction of effective 2-dimensionality implying that loop corrections vanish.
A good guess is that the presence of light like dimension is essential in mak-
ing it possible to have non-trivial Feynman graph expansion with vanishing
loops.

In TGD context punctures defined by the incoming and outgoing par-
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ticles would correspond to the surfaces X? resulting as intersections of the
light like 3-D CDs and 7-D M} x C'P,. The projections of X? define 2-D
light like surfaces in (5M_‘i so that also the moduli characterizing the sizes
of the holes are present. When X? is "small”, its size preserving projec-
tion along a suitably chosen light ray to rj; = constant sphere with a large
radius is a puncture whose angular size can be arbitrarily small unless X2
is homologically non-trivial and surrounds the dip of the light cone. The
moduli space of punctures is (n — 3)2-dimensional. 3 punctures necessary
for having a non-trivial braid are needed.

The value of the Kéhler coupling strength ax would dictate the values of
various coupling constants. The low energy limits associated with various p-
adic length scales are able to produce an effective coupling constant evolution
since a g depends on p-adic length scale defining the length scale resolution,
and possibly also on phase resolution. In p-adic context the phase resolution
corresponds to an algebraic extension allowing to express the phase factors
exp(im/n) as p-adic numbers in the extension. Note that the angles de-
fined by the quantization of angular momentum via cos(¢) = m/\/j(j + 1)
requires only quadratic extension.

The latter coupling constant evolution would mean the proportionality
of 1/h, and thus of ax = g% /4mh, on the ratio log(B,)/log(B(x), where
B,, = 4cos®*(m/n), n > 3, are so called Beraha numbers appearing in braid
and knot theories and quantum group theory. 1/h would be thus dynamical,
and the rule would be that when the charges of interacting system make
coupling so large that perturbative approach fails, the value of 1/ is reduced
[D6]. The extreme situation corresponds to n = 3 allowing the resolution of
only three angles coming as multiples of 27 /3.

The recent findings [18, D6] that gravitational physics of astrophysical
systems could be understood using Schrodinger equation with a gigantic
value of i for the evolution of dark matter, could be understood if gravi-
tational interaction between gravitational masses larger than Planck mass
induces a perturbative correction A(1/h) = vyg/GMm to the value of 1/h(n)
which is extremely small for n > 3 but in the case of 1/A(3) = 0 determines
1/h completely. vg ~ 10~ is a small parameter proportional to the ratio of
Planck length and C P; length.

3 Construction of S-matrix at high energy limit

The construction of S-matrix for C' Py extremals can be formulated rather
precisely and one can even speak about well defined Feynman rules. The
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QFT limit associated with this S-matrix certainly represents the most in-
teresting QF T limit of the theory.

3.1 S-matrix at short length scale limit

The approximate construction of S-matrix at the length scales, where parti-
cles propagate as C'P, type extremals is discussed in the chapter [C2]. This
construction serves as the basic framework for the understanding of the QF T
limit.

3.2 Basic properties of C'P, type extremals

CP; type extremal has the following explicit representation

mb = fru(s) . mudp 9 =0 (1)
The function u(s*) is an arbitrary function of C'P; coordinates and serves ef-
fectively as a time parameter in C'P» defining a slicing of C'P» to time=constant
sections. The functions f* are arbitrary apart from the restriction coming
from the light likeness. When one expands the functions f* to Fourier series
with respect to the parameter u, light likeness conditions reduce to classical
Virasoro conditions L,, = 0.

It is possible to write the expression for m” in a physically more trans-
parent form by separating the center of mass motion and by introducing
p-adic length scale L, as a normalization factor.

k

TE—; =pfu+Y, ﬁaﬁexp(i%mu) +ecec. . (2)

The first term corresponds to the center of mass term responsible for recti-
linear motion along geodesic line and second term corresponds to the zitter-
bewegung motion. p* serves as effective classical momentum: what however
has significance is whether p* is time like, light like, or space-like. Confor-
mal invariance corresponds to the freedom to replace u with a new ’time
parameter’ f(u).

The physically most natural representation of u is as a function f(U) of
the fractional volume U for a 4-dimensional sub-manifold of C' P, spanned
by the 3-surfaces X3(U = 0) and X3(U):

V(sk Sk (u
u = f(U) s U= V(évpi) = SK}((C('F)’Q) : (3)
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The range of the values for U is bounded from above: U < Vj0./V (CPy)
and the value U = 1 is possible only if C'P» type extremal begins and ends
as a point. U represents also Kéhler action using the value of the Kéhler
action for C'P, as a unit.

The requirement that C'P, type extremal extends over an infinite time
and spatial scale implies the requirement

f(Umaa:) =0 . (4)

For f(Umaz) < 0o C'Py type extremal can exist only in a finite temporal
and spatial interval for finite values of ‘momentum ’ components p¥. This
suggest a precise geometric distinction between real and virtual particles:
virtual particles correspond to the functions f(Ups) < 0o in contrast to
the incoming and outgoing particles for which one has f(Upay) = co. This
hypothesis, although it looks like an ad hoc assumption, is at least worth of
studying.

The mere requirement that virtual C'P, type extremal extends over a
temporal or spatial distance of order L > L, implies that for L < L, the
value of U is smaller than one. Kéahler action, which is given by

Sg(X") =U x Sg(CPy) (5)

remains small for distances much smaller than L. For f(Upz) = oo this is
even more true. This has an important implication: below a certain length
scale the exponential of the Kéhler action associated with the internal line of
a Feynman diagram does not give rise to a suppression factor whereas above
some characteristic length L and time scale there is an exponential suppres-
sion of the propagator by the factor exp(—Sk(CP,)) practically hindering
the propagation over distances larger than this length scale.

The presence of the exponential obviously introduces an effective infrared
cutoff: this cutoff is prediction of the fundamental theory rather than ad
hoc input as in quantum field theories. Of course, infrared cutoff results
also from the condition f(Uyes) < 0o. Physically the infrared cutoff results
from the topological condensation of the C' P, type extremals to larger space-
time sheets. These could correspond to massless extremals (MEs). p-Adic
length scale L, is an excellent candidate for the cutoff length scale in the
directions transversal to ME.

The suppression factor coming from the exponent of the Kéhler action
implies a distance dependent renormalization of the propagators. In the
long length scale limit the suppression factor approaches to a constant value
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Vmaa:
exp —WSK<CP2) ,

and can be absorbed to the coupling constant so that the dependence on
the maximal length of the internal lines can be interpreted as an effective
coupling constant evolution. For instance, the smallness of the gravita-
tional constant could be understood as follows. Since gravitons propagate
over macroscopic distances, the virtual C' P> type extremals develops a full
Kahler action and there is huge suppression factor reducing the value of
the gravitational coupling to its observed value: at short length scales the
values of the gravitational coupling approaches to Ggport = LIQ, which means
strong gravitation for momentum transfers Q* > 1/ Lg. The values of Viaz
and thus those of the suppression factor can vary: only at the limit when
CP» extremal has point-like contact with the lines it joins together, one
has Vipar = V(CP;). If the boundary component characterizing elementary
particle family belongs to C'P» type extremal (it could be associated with
a larger space-time sheet), C'P, type extremal contains a hole: also this
reduces the maximal volume of the C'P, extremal.

3.3 Feynman diagrams with lines thickened to C'P; type ex-
tremals

CP, type extremals are just what the on-mass-shell and off-mass shell par-
ticles of string models are expected to be.

a) The variation of the modified Dirac operator with respect to the
imbedding space coordinates implies Euler-Lagrange equations for the Kéhler
action and this in turn implies that massless Dirac equation is satisfied.
Quaternion- analyticity allows to write the solutions of the modified Dirac
equation explicitly and the requirement that the supercharges associated
with M4 x SO(3,1) x SU(3) x U(2)ew generate super-Kac-Moody algebra,
fixes the anti-commutation relations of the fermionic super charges which
come in two varieties corresponding to the supercharges associated with the
conserved fermion numbers and isometry charges. The super-Kac-Moody
algebra in question gives rise to the physical states satisfying Super Vira-
soro conditions. Mass squared is quantized for the representations of Super
Virasoro. There is degeneracy caused by the cm degrees of freedom forcing
to introduce plane waves and color partial waves. Note that the degeneracy
in C'Py degrees of freedom is present because C' P, type extremal is not the
entire C'P,. Genus-generation correspondence requires the presence of 3-
dimensional boundary either inside C' P, type extremal or on the space-time
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sheet at which C' P, type extremal is condensed at.

b) Kéhler action results as a c-number term from the normal ordering
of the modified Dirac action and appears in the exponent of the modified
Dirac action defining the vacuum functional of the theory. The exponent of
the Kéahler action for a piece of C'P, type extremal defined by the line of the
Feynman diagram appears as a factor in each internal line of the Feynman
diagram.

c¢) For CP, type extremals the spectrum of the conserved momenta is
continuous. The reason is that the random motion with light velocity can be
regarded as a superposition of classical random zitterbegung motion and an
average motion along time or space-like geodesic line. This means that mass
squared operator associated with the CP» type extremal is continuous and
C'P» type extremals can represent virtual particles appearing in the internal
lines of Feynman diagrams.

d) The condition that the orbit is light like random curve reduces to clas-
sical Virasoro conditions and the mass squared of the particle corresponds
classical to the 'momentum ’ squared associated with the zitterbewegung
motion.

3.4 Feynman rules

The heuristic view about Feynman rules (there are certainly delicacies in-
volved not taken into account in this simplistic discussion) is following.

a) There is a sum over all possible Feynman graphs with C' P, type ex-
tremals appearing as lines. This means integration over the positions of the
vertices characterized by points of Mi x C Py corresponding to cm degrees
of freedom. One must assign to each external particle a plane wave in Mf:
degrees of freedom and color partial wave in C'Py center of mass degrees of
freedom.

b) To each 3-vertex of the Feynman graph one assigns a Glebsch-Gordan
coefficient V' (a, b, ¢) for the tensor product of the incoming super-Kac-Moody
representations besides the factor taking care of the conservation of quantum
numbers, in particular four-momentum and color and electro-weak quantum
numbers.

The lines of the Feynman diagram contain two factors: the exponent of
Kahler action and translation operator along line.

a) The time development operator of wave mechanics is replaced with
the unitary translation operator along the line connecting the two vertices
P, and P,. Translation operator is expressible as the exponent of the con-
served four-momentum associated with the modified Dirac operator. The
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momentum operator is in the direction of the propagator line automatically.
By using an eigen state basis of four-momenta, translation operator along
the line connecting P, and P» can be expressed as

U(Py, Py) = exp(iPyAmF*) | AmF =mbk —mb . (6)

Rather remarkably, the contribution of the time development operator in
the dynamics trivializes totally and there is no need to construct explicit
representation of the momentum generators.

b) In order to get the propagator pole correctly it is necessary to assign
with the propagator line the factor

1

~ Lo+ie
where Ly is the representation of the Virasoro generator representing scaling
in the Super-Kac-Moody algebra defined by M4 x.SO(3,1)xSU(3) x U (2)cw-
In string models the propagator factor follows from the Hamiltonian time de-
velopment operator defined by Lg. In present case propagator-factor should
result from the vertex operators. The vertices at the ends of the Ramond
type propagator line should be proportional to 1/Gy resp. 1/ Gg). When
the internal line corresponds to N-S-representation, the vertices at the ends
of the propagator line should be proportional to the inverses of the super-
generator GE/2 resp. GF1/21,

c¢) Internal lines contain also an exponential suppression factor f(V)

given by the exponent of the Kéahler function for the piece of C'P, type
external defined by the line. This factor is given by

FV) = exp(—Si(XY) = exp —V(ZPQ)SK(CPQ) W

X% is the four-dimensional sub-manifold of C'P, having as its boundaries
the 3-surfaces X3(U = 0) and X3(U = V/Vgp,). The latter form follows
from the fact that Kéhler action density is constant for C'Ps type extremals
so that Kihler action is proportional to the volume of X*. All functions
U for which the internal line defines the same C' P, volume give rise to the
same Kahler action. In accordance with the conformal invariance, there is
no explicit dependence on the zitterbewegung orbit.

The presence of the plane wave factors implies that the integration over
the vertex positions multiplies the stringy propagator 1/(Lg + i€) with an
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infrared suppression factor given by the Fourier transform of F(V') which
on basis of Lorentz invariance is only a function of invariant line length of
M (V and invariant line-length are alternative parameters for the internal
line).

Scattering amplitude is obviously very sensitive to this factor and since
the suppression factor determines the momentum dependence of the propa-
gators, one can say that the laws of physics depend on the distribution for
the functions u(s*) sensitively. This distribution is in turn constrained by
the requirement that C'P, type extremals have suffered topological conden-
sation on larger space-time surfaces.

3.5 Fundamental coupling constants as Glebsch-Gordan co-
efficients

The Glebsch-Gordan coefficients associated with the quaternion-conformal
super-Kac-Moody algebra M* x SO(3,1) x SU(3) x U(2)eyw should be de-
termined by a construction analogous to the vertex operator construction
encountered in string models. In present case also a dramatically simpler
approximative treatment suggests itself.

3.5.1 Vertex operator construction

The construction of the vertex operators could proceed roughly as follows.

a) If one requires that C'Py type extremals form smooth surfaces one
must assume that the vertex regions are deformed so that the vertex repre-
sents topological sum of two C'Ps type extremals. This means that vertex
region has higher than 1-dimensional Mj4r projection and is presumably non-
vacuum classically. A simple analogy is that of gluing a cylindrical tube to
another cylindrical tube smoothly. In principle there are three functions
U = V/V(CP,) involved: denote them by U;, i = 1,2,3. Uy and Us are
associated with the outgoing C' P, type extremals and have value U; = 0 at
the vertex.

b) Since only 3-vertices are involved one can visualize the situation as
flows associated with two incoming lines combining to single flow along the
outgoing line. The C'P, time’ coordinate U (s*) serves as the time parameter
for the flow. Ome can continue the flow lines of the incoming flows such
that they intersect the outgoing 3-surface X3(U = 0, out) surface. Thus it
seems possible to divide the outgoing 3-surface X3(U = 0, out) to two parts
X3 (out) and X3(out) such that flow lines of the flows U;, i = 1,2 from two
external legs X3 (U,in), i = 1,2 enter these regions.
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c¢) This inspires the hypothesis that the fermionic quantum states as-
sociated with the two incoming lines are constructible using the oscillator
operators constructed from the fermion fields of X3(U = 0, out) restricted
to the region X2(in), i = 1,2. This would allow to express the fermionic
state at X3(U = 0, out) using the fermionic oscillator operators associated
with the outgoing line and one would obtain a superposition of various states
restricted by the conservation of basic quantum numbers.

d) Coupling constants V' (a,b,c) are not genuine constants of Nature
since they are parameterized by arbitrary functions U(sk) associated with
the incoming and outgoing lines. The dependence on these functions is
expected to be very weak. This dependence is present irrespective of whether
a complete localization occurs in zero modes or whether wave functionals
are possible in zero modes.

The general construction is clearly akin to the construction of vertex
operators in string models. For string models the fusion of incoming strings
defines splitting of outgoing string to two parts and essentially similar re-
lationship between incoming and outgoing oscillator operators results. In
present case the situation is complicated by the fact that the fusing objects
are 3-dimensional sub-manifolds of C'P, rather than strings propagating in
some higher-dimensional Minkowski space. On the other hand, the dynam-
ics of the basic objects is almost trivial since C'P, geometry is not affect at
all by the warped imbedding. In any case, the vertex operator is in principle
functional of the incoming and outgoing 3-surfaces X;.

3.5.2 Simplified model for the vertices

One can construct a simplified model giving a good idea about what for the
vertex operators look like.

a) Idealize the projection of the vertex region to a point in Mj‘; so that
the C'P, type extremals are not deformed in any manner in the vertex re-
gion. To get a minimally non-singular surface one must assume that the
functions w; for the CP, type extremals define same 3-surface X3 at the
vertex. This means that the conditions U; = constant for the incoming
line and the conditions Uy = 0 and Us = 0 for the outgoing lines define
same 3-surface. This means that the three ’time-coordinates’ U; have same
3-surface as a common time=constant slice. What this condition means
geometrically is that C P, type extremal branches: Y-shaped 1-dimensional
surface is the homological equivalent of the resulting surface. In fact, the
branching means that the situation is effectively 1-dimensional just as it is
quantum field theories. Although this surface is singular it might provide a
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realistic idealization for the construction of vertices.

b) The picture suggests the possibility that, apart from creation or anni-
hilation of fermion pairs, the Fock state representing the incoming particle
simply splits into a product of the Fock states associated with the outgo-
ing lines. This assumption is analogous to Zweig rule and would trivialize
the vertex construction. If this approximation is sensible, vertices would
be simply Fock space inner products between the initial state and the state
created by the product of the operators creating final final states. QFT
limit suggests that the operators creating the states are analogous to the
products of quantum fields ¢ (z) at same point z, say = 0. This requires
that operators can be constructed as products of the operators which are
sums of positive energy creation operators for fermion and negative energy
annihilation operator for anti-fermion. This would perhaps make it possible
to have nontrivial vertices since annihilation and creation of fermion pairs
becomes possible in the vertex provided that the annihilating fermions be-
long to different lines: this is essentially what Zweig rule states. For ’Zweig
option’ fermionic statistics implies that same fermionic oscillator operator
cannot occur in each line. It is not clear whether the vertices for the emis-
sion of graviton can be non-vanishing in this approximation. For photon
graviton vertex the total number of oscillator operators involved is just the
minimal one to allow graviton emission. If this picture is correct, the effec-
tive values of various coupling constants at QFT limit should be determined
by the average value of the exponential of the K&hler action associated with
the propagator lines representing the particles.

¢) Besides the conservation of various quantum numbers 'Zweig rule’
suggests the conservation of the vacuum weight h,,.. This conservation law
could be an excellent approximation quite generally. The conservation of
hyac eliminates very large number of the vertices involving exotic particles
and gives strong constraints on the vacuum weights of the observed particles.
For instance, in the emission of neutral gauge bosons vacuum weight is con-
served. This means that Z°, photon, gluon, and graviton must correspond
to particles having a vanishing vacuum weight. Furthermore, the differences
of the vacuum weights for the fermions inside electro-weak doublets must
differ by the vacuum weight of W boson.

d) One must somehow take into account the fact that the fermions inside
C P, type extremals move in different directions. The momentum directions
of the incoming state and outgoing states are related by a rotation. This
rotation corresponds to a unitary operator U;, i = 2,3 represented as an
exponent of the angular momentum operator associated with the modified
Dirac action. Therefore a natural idea is to perform the transformation
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a— Uian_1 for the fermionic oscillator operators of the incoming state.

e) The requirement that the vertices involve smooth topological sum of
C P, type extremals implies that vertex regions cannot be vacua in a finite
region surrounding the vertex point. Therefore it is not possible to have
vertices which are too close to each other so that the sizes of the loops have
lower bound, which saves from ultraviolet divergences. It is quite probable
that the loop diagrams using the vertex operators obtained by allowing
singular vertices give rise to ultraviolet divergences unless one introduces
the ultraviolet cutoff by hand.

3.6 S-matrix at QFT limit

The replacement of particle like topological inhomogenities with point-like
particles means the loss of all relevant geometric and topological information
since interacting and free space-time surfaces become identical. The basic
question is how to code the information about the restriction of the S-matrix
to the massless sector of the theory to an information characterizing the
QFT.

At practical level symmetry arguments is expected to lead to YM type
action having P x SU(3) x U(2)ey as quaternion-conformal gauge group
of symmetries. The corresponding Hamiltonian dictates the S-matrix as
time evolution operator. The construction of S-matrix in terms of the time-
ordered correlation functions using effective action approach suggests the
interpretation of the Feynman diagrams of YM theory as QFT counterparts
for the topological sums of C' P, type extremals. Only tree diagrams are
included.

3.6.1 What are the input parameters of the QFT limit?

The exponential factor exp(—Sk (X*)) defined by the Kihler action is expo-
nentially sensitive to the volume of the internal line and thus to the length
L of the propagator line connecting the two vertices. Thus the propa-
gator in the momentum representation involves the Fourier transform of
exp(—Sk(X*)) which is functional of the function U.

The behavior of the propagator as a function of the momentum transfer
depend on the selection of the function U associated with vacuum extremals
and it seems that one cannot avoid spin-glass type averaging over QFT limits
associated with various choices of U. Various coupling constants are propor-
tional to the Glebsch-Gordan coefficients V' (a, b, ¢) for the tensor product of
Super-Kac-Moody representations for two incoming lines. Besides propaga-
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tors with highly nontrivial infrared behavior depending on U, these coupling
constants, are the basic inputs of the QFT limit. Spin glass averaging over
the allowed functions U is certainly necessary also for for the results of QFT
limit.

3.6.2 Can one avoid infrared suppression and how the values of
the coupling constants are determined?

CP, type extremals of infinite duration (v = f(U) — oo at the limit
U — Unag) can appear as incoming and outgoing states since wave function
normalization (division of the propagator factors of external lines away) com-
pensates the suppression factors coming from the external legs of the Feyn-
man diagrams. In case of internal lines the situation is different. An inter-
esting question is whether the exponential IR suppression could be mildened
by some mechanism and whether the mildened IR suppression could in fact
determine the values of the effective coupling constant strengths as propor-
tional to the suppression factors associated with the propagator lines emerg-
ing from the vertex. If virtual C'P, type extremals have finite length (f(U)
is finite for all values of U), there is always also absolute length scale cutoff
involved with the interactions induced by them. This cutoff could explain
color confinement and imply deviations from QED at large distances.

3.6.3 Could CP; type extremals have a small volume?

CP, type extremals could have a volume which is only a small fraction of
the full volume of the entire C'P, type extremal: the exponents of Kahler
action for the virtual particles in the vertex would thus define the values of
the effective coupling constant strengths.

a) This would be the case if generation-genus correspondence is due to
the holes inside C'P, type extremals and if C'P, type extremals have con-
siderable volume at the moment of absorption and emission. On the other
hand, the volumes of the virtual C'P, type extremals should be essentially
the same irrespective of the genus of the hole since the couplings of the
fermionic generations to photons are in an excellent precision the same. If
the hole gives rise to a large reduction of the volume of C' Py type extremal,
it is difficult to understand why the reduction factor would not depend on
the topology of the hole. The safest conclusion is that the hole should give
rise to a negligibly small reduction of volume.

b) The simplified model for the emission of C'P; extremal assumes that
the 3-surfaces associated with the incoming and outgoing particles are iden-
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tical at the vertex. Since one of these particles is the incoming particle, it
is natural to assume that these 3-surfaces are far from point-like so that a
considerable reduction of the volume would automatically occur. One can
also consider the possibility that C' P, volume increases rapidly to its asymp-
totic value so that the incoming surfaces at the vertices are always in the
asymptotic region and have volume near the maximal volume. This implies
that the values of the effective coupling constants are determined by the the
averages volumes of the C'P, type extremals.

¢) Gravitons could differ from other particles basically because the size
of the gravitonic 3-surface at the moment of emission is very small. This
could be understood if the vertex for the emission of graviton vanishes in the
approximation in which vertex represents singular manifold homologically
equivalent with a 3-vertex of QFT. This is quite possible and in accordance
with the standard physical intuition that quantum field theory description of
graviton is not possible but requires genuinely higher-dimensional vertices.

4 What the low energy QFT limits of TGD in X*
might look like if they exist?

There are good reasons to be skeptic about quantum field theory limit of
TGD define in space-time surface. It would be however not wise to not see
what this kind of limit would look like and whether it can cope with various
challenges posed by new views such as the new understanding of color and
family replication phenomenon.

4.1 Basic approaches

A priori, one can consider several approaches to the construction of the
low energy QFT limits of TGD corresponding to Kaluza-Klein type theory,
sigma model type theory and a hybrid of these two approaches: the last
approach turns out to be the most promising one.

4.1.1 Sigma-model approach

The definition of the QFT limit as a quantum field theory on the effective,
quantum average space-time surface, determined as a maximum of Kéhler
function, leads to a well defined concept of classical space-time consistent
with basic quantum TGD. The inner product of configuration space spinors
contains phase factor and the exponent ezp(iSesr(X;}(X?))) of the classi-
cal effective action could appear as a phase factor in matrix element dis-
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tinguishing between different quaternion-conformal deformations. On the
other hand, the symmetry of the effective action under these deformations
suggests that Scy; is quaternion-conformal invariant and thus constant.

The integral over the degenerate space-time surfaces related by quaternion-
conformal deformations is assumed to mimic the effects of the path integral
giving rise to Feynman diagrams identifiable as QF T counterparts for Feyn-
man diagrams with lines thickened to particle-like 4-manifolds. YM action
plus Dirac action for the induced spinors, with color index added in case of
quarks, seems to provide a natural manner to define the theory.

This approach has however some severe problems, the worst of them
being the phenomenological description of the particle massivation. It has
become clear that particle massivation in TGD framework involves both
p-adic thermal massivation which is an excellent approximation in case of
fermions, and TGD version of Higgs mechanism which is an excellent ap-
proximation in the bosonic sector. To describe the thermal contribution
to the masses one could introduce besides dynamical Higgs field also a phe-
nomenological Higgs field expressible in terms of C'P, gamma matrices. This
is indeed formally possible by introducing a Higgs field of unit norm with
couplings to fermions put in by hand to reproduce fermion masses correctly.
Ordinary Higgs field would be presumably enough to save the unitarity and
would only induce only mass shifts in case of fermions. The beautiful general
covariance at the level of the imbedding space is however lost via the ad-
dition of these phenomenological couplings. Also the many-sheeted nature
of the space-time and the presence of space-time boundaries leads to grave
technical difficulties in this approach.

4.1.2 Hybrid of Kaluza-Klein and 4-dimensional QFT

One can consider also a hybrid of the previous approaches based on the
quantum generalization of the induction procedure. This approach seems to
be the most promising one.

a) The states described by the configuration space spinor field reduce at
the point like limit to a Kaluza-Klein type fields in H. This suggests that
one should replace the metric and gauge potentials of the imbedding space H
(rather than those of space-time surface) with their quantized counterparts
by adding to them the quantum fields describing electro-weak and color
gauge potentials and quantized gravitational field understood as quantum
fields in H reducing to quantum fields in A% in the low energy limit. Also
H-gamma matrices should be quantized and their quantization induces the
quantization of H-metric. The generalization is possible by regarding the
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H-vielbein as a fundamental variable, which is replaced with the sum of the
classical and quantum term so that the quantum deformation of H-metric
(actually M*-metric) contains also a term quadratic in the quantum part
of the vielbein defined by the standard formulas. The quantization induces
also a quantum term also to the M* spinor connection. The quantization
need to be done only once unlike in the previous case and one avoids the
horrible technical problems caused by the many-sheeted space-time. Note
that quark color must be described as a spin index rather than color partial
wave.

b) The induction procedure is generalized: instead of inducing the clas-
sical metric and spinor connection of H, the quantized metric and spinor
connection are induced using the same basic formulas as in the classical case.
No troubles from the normal ordering are encountered since H-coordinates
are regarded as classical variables. Also gluon field, having only M* com-
ponents, is induced by simply projecting it to the space-time surface.

¢) Yang-Mills-Dirac action, defined in terms of the induced fields on the
absolute minimum of Ké&hler action and maximum of K&hler funciton, de-
fines the low energy QFT. The bosonic fields appearing in the action are
superpositions of the induced field plus c-number quantum terms. Spinor
fields are Grassmann algebra valued fields. Of utmost importance is that
these fields are basically fields in M* and have Fourier expansions in terms
of M* momenta with masses predicted by quantum TGD and p-adic ther-
modynamics. There are no problems with Poincare invariance: polariza-
tion vectors, momenta, etc. are associated with M* rather than X*. The
approach makes also possible to avoid the difficulties related to the many-
sheeted nature of space-time. For instance, there is no need to consider
the problem how to relate the quantum fields of two space-time sheets
connected by wormholes to each other or how to define propagators in a
topologically nontrivial space-time. Space-time boundaries pose no special
problems. Theory is formally defined even well defined even for string and
membrane like objects.

d) The YM action is regarded as an effective action so that no functional
integral is carried and only tree diagrams are taken into account. Propaga-
tors do not result from the kinetic term of the action, which would give rise
to massless poles but from the time ordered products for the M* quantum
fields assumed to be those of free fields. The entire YMD action is therefore
regarded as an interaction term unlike in the usual approach. Hence there
is no need to reproduce particle masses using formal Higgs fields.
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4.2 Induction procedure at quantum level

In the definition of QFT limit based on the generalization of the induction
procedure, all quantum fields are basically free quantum fields in H, which
at the low energy limit reduce to quantum fields in M* with color quan-
tum numbers described as phenomenological spin degrees of freedom. The
Fourier expansion of these quantum fields is given a priori and corresponds
to the mass predicted by the quantum TGD and p-adic mass calculations.
At the calculational level this means that propagators are free field propaga-
tors of M* QFT. Hence there is no need to reproduce thermal contributions
to particle masses in QFT using artificial Higgs fields (genuine Higgs field
causing the massivation at the fundamental level). Also Poincare invariance
is achieved in an elegant manner. A further nice feature is that one can
circumvent all the problems related to the nontrivial space-time topology in
the quantization.

Just as in the classical theory, space-time quantum fields are induced
fields and hence defined as projections of quantum fields of H to space-
time. Electro-weak gauge bosons correspond to quantum term in H-spinor
connection in M* degrees of freedom. The gamma matrices of H are also
quantized. Graviton is identified as the quantum contribution to M* vielbein
rather than M?* metric. The quantum contribution to the M* metric is
defined by the standard formula for the metric in terms of the vielbein. The
components of the gluon field

ga = ga(c) +galq) ,

are defined as space-time projections of the H-vector field defined as a sum
of the Killing vector ga(c) = j4 having only C' P, components of the color
isometry and gluon field g4(q) having only M* components. The contri-
bution of the classical gluon field is necessary in order to understand the
concept of the color flux tube. Also fermion fields are regarded effectively
as fields in M* at the low energy limit of the theory. Clearly gluon field can
be regarded as a quantized Killing vector field having also M* components.
The fact that gluon and graviton have very similar role in quantum TGD,
raises the possibility that gluons actually contribute to the quantized metric
of H. A suggestion as how this should be described formally, is given by the

identity
=

for the C'P; metric in terms of the Killing vector fields of the color group.
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This identity allows the representation

eh(c) = ea(c)jhiP* .

for the vielbein of C'P,. This suggests a generalization of C' P, vielbein to

ea = enlc)ghg® =ealc) +ealc)is(c)igalq) - (8)

having also M* components. In this manner the quantized metric contains
an additional M* — C'P, cross terms proportional to quantum gluon field
as well as M? term quadratic in quantum gluon field. Since M* vielbein
corresponds to translation generators one can conclude that the quantum
contribution to H metric can be expressed in terms of the quantized isometry
generators of H.

Second interesting question is whether one could understand the quan-
tum parts of the electro-weak gauge potentials as resulting from the quan-
tum part of the C'P, vielbein having M* components. If this where the case,
bosonic fields would result from the quantum deformation of H-metric. The
deformation of C' P, vielbein indeed introduces to the spinor connection of H
a term expressible in terms of gluon field contracted with the color isometry
generators but this term cannot be identified as electro-weak gauge poten-
tial (also the couplings of this term are of the order of the gravitational
coupling) so that an additional term is needed.

There are two objections against this vision.

a) If one regards quantum parts as quantum fields in H the commutators
and anticommutators are 7-D delta functions and restricted to space-time
surface the normal orderings give rise to horrible singularities. This problem
can be avoided if the action is regarded only as an effective action. One could
try to avoid the difficulty is to assume that quantum fields are constant in
CP» degrees of freedom and color degrees of freedom so that commutators
give 3-D delta functions.

b) One could worry about the large mass renormalization corrections
caused by the kinetic terms associated with the quantum parts of the induced
H-fields. Since the coefficients of the parts depend on the space-time point,
one might argue that they do not give rise to genuine mass corrections.

4.3 The general form of the effective action

The need to obtain physical interaction vertices forces the action for the
quantum field theory in question to be the low energy action for the Yang

30



Mills Dirac (YMD) type theory defined by quantum TGD. This effective
action is estimate for maxima of Kahler function and thus absolute minima
of Kéahler action. The presence of curvature scalar is not necessary nor even
possible since Einstein’s equations have interpretation as kind of equation
of state in TGD framework. Super Virasoro generator Ly generating the
time evolution in quantum TGD is indeed analogous to Yang Mills Dirac
Hamiltonian. The effective action should decompose as

Sefr = Sp+Sr , 9)

where Sp and Sg are the fermionic and bosonic parts of the action. Bosonic
action is expected to decompose to YM action describing electro-weak gauge
bosons and gluons plus curvature scalar term describing gravitons. In gen-
eral, the induced bosonic fields are sums of the classical and quantum con-
tributions. This is also true for the induced gamma matrices.

4.4 Description of bosons

The spectrum of the light particles is determined by the quaternion-conformal
super-Kac-Moody algebra associated with P x SU(3) X U(2)ey, where P de-
notes Poincare group, and by p-adic thermodynamics telling which massless
particle remain light in given mass scale. Neither the identification of the
light particle spectrum nor a detailed description of effective action is at-
tempted here and the consideration is restricted to the description of most
important terms present in the effective action.

The Yang Mills fields appearing in the low energy effective action are
expected to correspond to the induced gauge fields so that electro-weak and
color gauge fields are the only fields appearing in the effective action at low
energies. The bosonic part of the action decomposes therefore as

Sp = Sew+Sc+ Sy, (10)

to electro-weak, color and gravitational parts respectively. Se, and S, are
YM actions for electro-weak and color interactions with coupling constants,
which quantum TGD in principle predicts as a function of p-adic length
scale L(p).

The induced gauge potentials can be decomposed to the sum of the
quantum and classical parts:
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A = A +Ay . (11)

The presence of the genuinely classical part, determined by H-geometry,
in gauge potential is an effect characteristic to TGD and leads to interest-
ing predictions. For instance, space-time surface can carry non-vanishing
vacuum gauge currents and electromagnetic gauge currents can give rise to
coherent states of photons.

The metric tensor appearing in the action is regarded as the induced
metric associated with H- metric containing quantum part and YM action
gives rise to the standard coupling of matter to gravitons. Graviton con-
tributes only to the M* metric and one can write the M* metric as a sum
of the classical and quantum part

9gH = 9gH +9q - (12)

Minkowski coordinates are the preferred coordinates used to defined g.
Quantum part of the induced metric, is by definition treated as a small per-
turbation in the genuinely classical background metric. Einstein’s equations
are regarded as equations for the density of gravitational mass identified
as the difference of inertial mass densities of positive and negative energy
matter.

4.5 Description of the fermions

The fermionic term Sg contains the contribution of all light families in the
energy scale considered. The concept of induced spinor field generalized to
quantum context is very attractive. The description of the fermionic degrees
of freedom is however not quite straightforward.

4.5.1 How to define quantum counterparts of the induced gamma
matrices?

Induced gamma matrices can be defined as space-time projections of the
quantized H-gamma matrices. The problem is to define these objects. The
low energy limit only the M* metric contains quantum part and the prob-
lem reduces to the quantization of the M? gamma matrices. The formal
definition of the quantized gamma matrices reads as
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Y = (e)+mla)
vy = 2mp (13)

with quantum correction v, defined so that the anti-commutator of the in-
duced gamma matrices gives M* metric with a quantum correction.

An elegant manner to get rid of possible difficulties related to divergences
and normal ordering problems is to identify graviton basically as the quan-
tum deformation of the vielbein so that the quantum term in M* metric
is defined by the anti-commutator of the quantized gamma matrices. The
quantization of the gamma matrices in turn reduces to the quantization of
the vielbein, when -, is expressed in terms of the ordinary gamma matrices:

Y = epva
A A A
e = ex(c)+ep(q) -

(14)

Here v4 are the ordinary flat space gamma matrices. The quantized metric
reads as

m = epeft =mule) + el (el (9) + i (@)ef (¢) + et (a)ef' (a) - (15)

4.5.2 How to describe quark color phenomenologically?

Color is not a spin like quantum number at the level of the induced spinor
fields and at the level of the configuration space spinors it corresponds to
a color partial wave associated with boundary component plus Super Kac
Moody excitation in the interior degrees of freedom.

If one describes fermion states as H-spinor fields one should associate
the color quantum numbers of the state to a color partial wave unless one
is willing to introduce color as a phenomenological color index. The first
approach however leads to problems.

a) If one associates to a fermionic state H-spinor and requires it to be an
eigen state of C'P, spinor Laplacian, one ends up with difficulties with color
since color partial waves have wrong correlation between color and electro-
weak quantum numbers. The only possibility seems to be the association of
the desired color partial wave to a state with given electro-weak quantum
numbers by hand.
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b) It is not clear whether this procedure is consistent with the properties
of the C'P, spinor structure also it seems difficult to understand how one
could get the conservation of the color quantum numbers since the restriction
of the state to a space-time surface means a total localization in C'P» degrees
of freedom and the overlaps of the colored states, orthogonal at the level of
the configuration space, become non-vanishing.

These arguments strongly suggest the use of of H-spinors as the coun-
terparts of the quantum states with color described completely phenomeno-
logically as an additional spin degree of freedom.

4.6 QFT description of family replication phenomenon

TGD provides topological explanation for the family replication phenomenon
[F1]. Particle families correspond to various topologies for boundary com-
ponent of 3-surface carrying elementary particle quantum numbers. Also
gauge bosons are predicted to have infinite number of families. TGD gives
general mass formula for particle families [F2]) and only three lowest gener-
ations are expected to be light [F1]). For the possible physical implications
of massive higher generations of gluons and electro-weak bosons see [F5].

The problem is that family degeneracy for gauge bosons is not necessarily
consistent with gauge invariance. First, one should somehow eliminate time
like polarizations for the vector fields representing higher generation bosons
and the only known manner to achieve this is via a gauge fixing. Some
kind of extended gauge invariance suggests strongly itself but standard type
extension of the gauge group is out of question.

It turns out that consistent description of generation degeneracy is pos-
sible and given gauge theory with family replication in M* is formally
equivalent with same gauge theory without family replication but defined
in M* x S' and this is essentially due to the infinite number of particle
generations for both fermions and bosons.

4.6.1 Family replication phenomenon in gauge theory context

To avoid unessential complications the argument is described first in real
QFT context and neglecting the topological mixing of the particle families.

1. M* = M* x St trick

The fact that the genus of boundary component is effectively conserved
discrete quantum number suggests how to achieve this. Genus corresponds
effectively to a discrete momentum in additional dimension so that the QFT
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describing the family degeneracy is perhaps formally identical with same
QFT without family replication but defined in M* x S', where S is circle
with some radius R. Lowest fermion genera and ordinary gauge bosons
correspond to the modes of quantum fields with are constant in S' and have
momentum g = 0. Higher genera would correspond to g > 0 modes exp(ige)
in S'.

The action of the theory is essentially Standard Model action in 5 dimen-
sions (leaving from the consideration color exotic states now). The action
consists of pieces (color and electro-weak gauge interactions) of following
general form

d
S = /(LYM +Lmatter)d4l‘27¢ 5
e
1
L = — (F,F* 4+ 2F, ,F1?
YM 167ng(( i + 2Fu 1)
Lp = V("D +7°Dy)¥ . (16)

The metric of St is 9o = R?. YM part of the action has been decomposed
into standard four-dimensional YM action plus the term corresponding to
the new components F),4 of gauge field. F|,5 is obtained from gauge potential
(Au, Ay) in standard manner. Ay is has interpretation as a formal Higgs
field in 4-dimensional context. Fermion fields have no additional components
since the number of components of fermion fields is same in dimensions
D = 2n and D = 2n + 1. The gamma matrix field 74 can be chosen to
be proportional to the C'P, gamma matrix ' representing constant non-
dynamical "Higgs’ field defined by the C'P, part of the second fundamental
form.

2. Elimination of 'Higgs’ field part of the action

If TGD picture is correct it should be possible to eliminate the Higgs
field part of YM action associated with genus-degeneracy and this is indeed
the case. Of course, the couplings to the ordinary Higgs remain. In Landau

gauge
Ay = 0. (17)

The Higgs field associated with genus-degeneracy indeed disappears com-
pletely and the field equations for YM fied read as
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(D,,D”+%8¢8¢)A“+D“(D”A,,) — g,
9o(DYA,) = 0 . (18)

J# denotes the source term coming from Dirac part of the action.
It is instructive to write field equations separately for each mode g # 0.

(D, DY A¥)(g) — m*(g) At (g) = J* |
DVAZ/(g) = 07

mg) = L. (19)

Here the covariant derivative terms contain nonlinear couplings with g1 # ¢
modes of gauge boson fields not written explicitly. The field equations for
g # 0 modes are field equations for massive vector field with mass m?(g) =
g*/R? and additional condition eliminates time like polarization. Higgs
field A4(g) has transformed to the longitudinal polarization of massive YM
field A,(g). The gauge condition remains invariant under arbitrary gauge
transformations not depending on S' coordinate. This freedom allows to
pose in standard manner gauge condition to the gauge field component with
g = 0 and vanishing mass and standard YM field equations for g = 0 gauge
field component result.

Also for fermions one obtains the desired results. Different fermion fam-
ilies are coupled together via the gauge potentials A(g), and gauge coupling
is same for all modes (renormalization corrections probably preserve the
couplings as identical). The Dirac equation for the mode g contains 7¢D¢
as mass term and the mass is just m(g) = g/R. Note that the mass formula
is for fermions and bosons is necessarily identical and un-physical.

3. The problems of the approach

The first problematic feature of the proposed scenario is that the in-
troduction of the gamma matrix 4 brings in a definite ad hoc-ness. The
reproduction of the particle masses is also an obvious shortcoming of the ap-
proach. The simple mass formula m?(g) = g?/R? is quite different as com-
pared to the mass formula excluding electro-weak corrections and containing
only modular contribution to mass coming from the boundary component

1
m? = fg)=3-2"12+ g1z, 9<3, (20)
p
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L, is the p-adic length scale determining the mass scale. For g > 2 masses
should be of order Planck mass but the mass formula is not known. A
possible resolution of this difficulty in real context would be following. The
mass operator meq, = D/R = Z% acts as a multiplication operator in plane
wave basis exp(igg) for S! and it formally possible to replace D/R with

Hermitian multiplication operator giving the required mass formula

D D
F 00D

D = idy . (21)

The only consequence of this replacement at the level of Feynman rules is
to replace masses with their physical values. At the level of YM fields one
replaces the partial differential operator (9; by m?,p. A possible interpretation
is as a redefinition of gauge fields and spinor fields in Landau gauge via the

linear but nonlocal transformation defined by the differential equation

Mop =

mopcbnew = %a¢>q)old . (22)
Transformation reduces to purely algebraic form in plane wave basis and
writing the action in plane wave basis one finds that the desired field equa-
tions are obtained.

A further problem is related to the physical interpretation of g < 0 states.
The number of handles of the boundary component is nonnegative but one
must associate to it sign factor in order to allow reactions such asy — pu* ™,
decay g(0) — g(1) + g(1) of gluon to higher generation gluon pair, virtual
processes ¢ — p + Z(1) and p — e + Z(1),etc. These processes can be
geometrically understood as process in which g > 0 boundary component
emits g = 0 boundary component and possibly also changes its direction
of propagation in time. For instance, in e — p + Z(1) Z(1) proceeding
backwards in time emits e and changes to pu proceeding forwards in time.
This means that depending on situations same particle behaves as g > 0
plane wave or as g < 0 plane wave. One cannot however allow both g > 0
and g < 0 states as physically different modes. This requires that both
fermions and bosons correspond to the real plane wave basis

fy(6) = ;Ecos<g<z>> , (23)

rather than complex plane waves exp(ig¢). This complicates the Feynman
rules somewhat but does not bring anything essentially new.
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4.6.2 Family replication phenomenon for graviton and super part-
ners

The formal extension of M+ QFT to M* x S! applies also to the description
of the family replication phenomenon for super partners and graviton.

One can formally extend the super-symmetrized theory to M4 x ST since
the spinors of 4 + 1 dimensional space are identical with the spinors of 4-
dimensional space and Majorana (Weyl) condition essential for super sym-
metry can be realized. The thermal and modular contribution to mass makes
higher generations massive and break super symmetry.

The formal treatment of the family replication for graviton in the ordi-
nary field theory context seems also possible by replacing background space-
time with M* x S' just as in the case of bosons and fermions. The physically
natural coordinate conditions read as g,4 = 0 and gy = R? and are com-
pletely analogous to Landau gauge A, = 0 for gauge bosons. For g # 0 the
conditions imply that on mass shell modes of the metric deformation satisfy
the usual harmonic gauge condition 9,h*"(g) = 0, g # 0 in lowest order
and linearized field equations for h,, (g # 0) contain the desired mass term.
For g = 0 one can pose these conditions as gauge conditions in standard
manner.

4.7 Features of the QFT limit characteristic to TGD

The presence of the classical terms in the YM action defining low energy
QFT limit, leads to some predictions characteristic for TGD approach.

a) The many-sheeted space-time concept is a spectacular prediction,
which might explain the formation of the structures purely topologically. A
closely related prediction are wormholes feeding gravitational and electro-
weak fluxes between space-time sheets. The wormholes feeding the gauge
fluxes must be light. p-Adic length scale hypothesis suggests that their
masses for a space-time sheet corresponding the p-adic prime p is or order
1/L(p), L(p) = /pl, | ~ 1.37 x 10*v/G. This would mean that in the length
scales below L ~ 1/T the BE condensates of wormholes are possible and
stable in the room temperature corresponding to L ~ 10~ meters.

b) The presence of a genuinely classical term in the gauge potentials
and gravitational field imply the generation of coherent states of photons
and gravitons since classical gauge currents as well as non-trivial vacuum
Einstein tensor are possible in TGD. For instance, the so called massless
extremals, for which the gauge currents and Einstein tensor are light like,
could serve as sources of coherent photons and gravitons. The source term
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generating coherent gravitons would be the energy momentum tensor of the
classical Kahler field with vacuum Einstein tensor subtracted.

c) The basic objection against TGD is that the set of the space-time
metrics imbeddable in H = M i:c x C' Py is extremely restricted. Reissner-
Nordstrm metric is imbeddable but already the imbedding of a rotating
black-whole is very probably impossible. The generation of coherent states
of gravitons suggests how to circumvent the counter argument. The expres-
sion for the quantized induced metric contains besides the classical part also
the quantized part and coherent states should be eigen states of the nega-
tive energy part of the quantized metric. Therefore quantum expectation
of the quantized gravitational field for coherent states of gravitons contains
additional part making possible more general effective space-time metrics.
Einstein’s equations should be satisfied in the sense that the expectation
value should satisfy Einstein’s equations for the quantized energy momen-
tum tensor from which the contribution coming from the Einstein tensor of
the space-time surface, identifiable as vacuum contribution, is subtracted.
Vacuum contribution is unique since space-time surfaces are absolute min-
ima of Kéhler action.

4.8 About coupling constants

It is possible to understand the value of the gravitational constant by a
simple dimensional argument based on the properties of the C P, type ex-
tremals and p-adic length scale hypothesis [?, E5]. This argument also
fixed the dependence of the Kéahler coupling strength on the p-adic length
scale completely: in electron length scale Kahler coupling strength was as-
sumed to be in a good approximation equal to the fine structure constant
since purely electromagnetic classical fields, believed to dominate in electron
length scale, are proportional to Kahler field so that bosonic YM action is
essentially Kahler action in these length scales:

aK(me) > Qem - (24)

Recall that the order of magnitude estimate for the gravitational constant
in terms of the p-adic length scale L, = /pl, [ ~ 1.36 x 10*V/G and of the
suppression factor given by the K&hler action exponential, is obtained by
studying the diagram representing an exchange of a graviton and is given
by

G =~ eap(~25(CPRy)/ax)L?
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L, = ol . (25)

As found, a i (Mio7) is very nearly the fine structure constant at m, corre-
sponding to p = 2127 —1, gives G correctly. In the absence of the suppression
factor one would have strong gravitation. The requirement that G does not
depend on the p-adic length scale leads to the evolution of ax as a function
of the p-adic length scale.

The values of the remaining coupling strengths are predicted by quantum
TGD and appear as input parameters in the low energy QFT limit of TGD.
Obviously these coupling strengths are proportional to the Kéhler coupling
strength ag.

5 Classical part of YM action

The basic idea of the approach is that absolute minima of Kahler action
define the background defining various classical YM and gravitational fields.
Quantum theory is obtained by adding to these fields quantum corrections
and performing perturbation theory.

5.1 The field equations for coherent states

Classical field equations define the classical space-time serving and coherent
state serving as a background for the low energy QFT. In a given quantum
state the vacuum expectation value of the YM action contains state depen-
dent terms giving rise to source terms in classical field equations. In the
following only the field equations in vacuum are considered.

The field equations can be written in the form

SF = S+ Skysk=0. (26)

The first term is given by the expression

St = FR%,

Fe = ZTT(JfFa,a),

« 1 af

Je = g—2D/3Fa . (27)

Here J, is just the standard YM current (the corresponding YM couplings
are included in the definition of J¢) and a labels various subgroups of the
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total gauge group. The term F'“ can be interpreted as a sum of the force
densities associated with the electro-weak and color interactions.
The second term of the field equations is given by

Sy = 1°%HE,
T = TH (28)

The third term in the decomposition is given by

S5 = > Tr(J*FHn, . (29)

The quantum versions of classical field equations are obtained by taking
expectations between coherent states. In this manner the complex parame-
ters characterizing coherent states are in principle fixed.

5.2 The detailed structure of the classical YM action

In the following the general structure of the classical YM action will be
considered.

5.2.1 Electro-weak term at the symmetry limit

The U(1) coupling of the spinor field to Kéhler potential of C'P» is neces-
sary to obtain an acceptable spinor structure [16]. This coupling also fixes
electromagnetic charges and the triality of SU(3) representations for the
solutions of Dirac equation in C'P, [16]. The allowed couplings are given
by odd integers. n = —1 corresponds to leptons and n = 3 corresponds to
quarks.

The vielbein curvature of C'P; is given by the expression

1
Ry = §RklABEABa

~ lparps) (30)

EAB
4

where Rjjap denotes the components of curvature tensor. R,gap denotes
the projection of this tensor to X*.

The contribution of vielbein term to the electro-weak action is given by
the expression
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Lygp = (r/169*)RasapR**AP

T =

1

— . 31
. (31)
The term differs by a factor of » = 1/8 from the standard definition of gauge
action. The reason is that for sigma-matrices of H have normalization, which
differs by a factor 8 from the normalization of the standard Lie-algebra
generators

Tr(xAPxAB) = 5 =4 (32)
To obtain a definition of coupling constant comparable with the standard
definition one must therefore include the factor r = 1/8.
The expression for the U(1) part of the spinor curvature is

Fiz = (nldy+n_Id_)Jag . (33)

where ny and n_ denote the couplings of Kéahler potential to quarks and
leptons respectively and J,z is the induced Kahler form. Id4 is the projector
to the space of the spinors with chirality e = £1.

The expression for the U(1) part of the electro-weak action at the sym-
metry limit is given by the expression

r
Lyay = @TT(Fo{ﬁFféﬁ)

1
= r(n? +n2_)g—2JagJ°‘B : (34)
Again the factor » = 1/8 is necessary since the unit matrix of gamma matrix
algebra has trace, which is 8 times larger than the trace associated with
standard U(1) generator.
5.2.2 Electro-weak symmetry breaking term

Electro-weak symmetry breaking term, which is proportional to Kéahler ac-
tion and results from the deviation of electro-weak U(1) coupling from its
value at symmetry limit reads as
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Lp, = EA(ni—Fn%)JagJaﬂ . (35)

The expression for Weinberg angle can be deduced by requiring that the
action contains no Z — v type cross terms and is given by [see Appendix]

9
p o= sin(Ow) (28 + g2A)
FA = 2—28, (36)

where A parameterizes electro-weak symmetry breaking. The value of the
Weinberg angle at symmetry limit is p = 9/28 and differs somewhat from
p = 3/8 of a typical GUT [17]. p = 2% is also obtained in quantum TGD
from the requirement that Z° and photon states are orthogonal to each
other.

5.2.3 Gluon term

Gluonic gauge potentials are proportional to the X% projections of Killing
vectors of SU(3) isometries,

g = kil (37)

The curvature form of the classical gluon field is given by

ghy = kHY . , (38)

where H# denotes the Hamiltonian of the color isometry. Since the identity

SHAH, = 1, (39)
A

holds for the Hamiltonians of color isometries gluon term itself is propor-
tional to Kéhler action

_ T af
Lowon = g3kJas ™. (40)
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The normalization of the gluon field itself is a matter of convention: the
ratio of the gluonic term to the electro-weak term contains the physics. To
fix the ratio consider the following argument. Colored point like fermions
correspond in TGD approach to color partial waves. CP, allows neither
ordinary color representations with non-zero triality nor standard spinor
structure. By coupling the Kéahler potential to the spinor field one how-
ever obtains representations for the Abelian extension of the color group
[appendix,Pope].

In the spirit of this picture it is natural to assume lepton quark symmetry
at high energies: electro-weak action for lepton is identical to electro-weak
plus color interaction for quark.

Lew,l = Lew,q+Lcolor . (41)

This assumption indeed makes sense only at very high energies: at low ener-
gies assumption leads to wrong value for strong coupling. If this assumption
is made the gluon term in action is given by the expression

rk

Lywon = ——5Japd®® |
gluon 493 «@
k 1 8
— = (nr-n?)5 == . (42)
4g? i 9 ¢
where one has used ny = 3 and n_ = 1. A natural manner to fix the

normalization factor k of the gluon field is to require that gluon coupling
constant is equal to the electro-weak coupling at very high energies. This is
a pure convention: all the physics is contained in the hypothesis described
above.

5.2.4 Explicit form of the curvature scalar

Although the inclusion of curvature scalar to the effective action does not
make sense in TGD framework, the explicit form of EYM action deserves
to be discussed. The gravitational part of the EYM action decomposes
contains curvature scalar term and volume term. The issue of cosmological
constant A is discussed in the sequel. The gravitational part of the EYM
action would be given by

Ly = o-ghtA- (43)

44



In the induced metric curvature scalar decomposes into two terms

R=Ri+ Ry = [Rapys+hu(HigH,s — HY Hy)g™ g . (44)

The first term results from the curvature of C' P geometry contains only first
order derivatives. The second term is quadratic in the second fundamental
form H 2/@ = Dﬁhf“a and is expressible in terms of the covariant derivatives
of induced gamma matrices:

1
Ry = 175T7«(1)ar0“1)ﬁr/@—Darﬁpgra) : (45)

This term resembles closely what might be imagined to be a kinetic term
for the induced gamma matrices regarded as dynamical variables.

5.3 Some useful data

In the following some basic data about C P, geometry are listed. The com-
ponents of the vielbein curvature of C'P, are given by

Roi01 = —Ro123 =1,  Rp2o2 = —Rp231 =1,
Raozo1 = —Raga3 = —1 , R3102 = —R3131 = —1 (46)
Ro303 = 2Rp312 = 4 , 2R1203 = Ri212 =4 .

The components of the Kéhler form are given by

Jiz = Jo3=2. (47)

The volume of C'P, is given by V(CP,) = m2R*/2, where R is the so called
CP, radius defined by the condition that the length of C'P» geodesic is
L = 7R. The area of C' P, geodesic sphere is given by A = 7R2.

The value of the Kéahler action for C'P; is given by the expression

T
S = ~gar (48)

A representative for the geodesic sphere of type I carrying vanishing Kéhler
form is given by the condition

¢o= . (49)



The condition

& = &, (50)

defines a representative for the geodesic sphere of type I1.
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